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FULL SIGNATURE INVARIANTS FOR L0(F (t))

STEFAN FRIEDL

(Communicated by Lance W. Small)

Abstract. Let F/Q be a number field closed under complex conjugation.
Denote by L0(F (t)) the Witt group of hermitian forms over F (t). We find full
invariants for detecting non-zero elements in L0(F (t)) ⊗ Q. This group plays
an important role in topology in the work done by Casson and Gordon.

1. L-groups and signatures

Let R be a ring with (possibly trivial) involution. An ε–hermitian (ε = ±1)
form is a sesquilinear map θ : V × V → R over a finitely generated free R–module
with the properties that θ(ra, b) = r̄θ(a, b), θ(a, rb) = θ(a, b)r and θ(a, b) = εθ(b, a)
for all a, b ∈ V, r ∈ R. It is called non-singular if the map V → hom(V, R), a �→
(b �→ θ(b, a)) is an isomorphism. We denote by L0(R, ε), ε = ±1, the Witt group
of ε–hermitian non-singular forms (cf. [L93] and [R98]). More precisely, denote
by M the groupoid under direct sum of ε–hermitian non-singular forms. Let ∼
be the equivalence relation generated by setting any form (V, θ) to zero that has a
submodule of half–rank on which θ vanishes. Then define L0(R, ε) := M/ ∼. This
is a group (cf. [L93]) under the direct sum operation. We abbreviate L0(R) for
L0(R, +1).

Let F ⊂ C be a subfield, closed under complex conjugation. We will always
equip the rings F [t, t−1], F (t) with the involution given by the complex involution
on F and t̄ := t−1. For τ = [(V, θ)] ∈ L0(F, ε) we define

sign(τ) := dim(V +) − dim(V −)

where V + (resp. V −) denotes the maximal positive (resp. negative) subspace of√
εθ. This number is independent of the choice of representative (V, θ).
If F ⊂ C is a subfield such that all positive elements are squares, then by

Sylvester’s theorem
sign : L0(F, ε) → Z

(V, θ) �→ sign(V, θ)
is an isomorphism. In particular, L0(C,±1) = L0(Q̄,±1) ∼= Z via the signature
map, where we denote by Q̄ ⊂ C the algebraic closure of Q. Since we are interested
in studying to which degree signatures determine forms, we work in this paper with
L̃0(R, ε) := L0(R, ε)⊗ Q, i.e. we ignore the torsion part of L0(R, ε). Note that the
above maps extend to an isomorphism sign : L0(F, ε) ⊗ Q → Q.
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Let F be a Galois extension of Q with a (possibly trivial) involution. Denote by
G(F ) the set of all Q–linear embeddings F → Q̄ preserving the involution. For ρ ∈
G(F ) denote the induced maps L̃0(F, ε) → L̃0(Q̄, ε), L̃0(F (t), ε) → L̃0(Q̄(t), ε), . . .
by ρ as well. Denote by G0(F ) ⊂ G(F ) any subset such that for each ρ ∈ G(F )
there exists precisely one ρ̃ ∈ G0(F ) with ρ̃ = ρ or ρ̃ = ρ̄.

Let τ = [(V, θ)] ⊗ p
q ∈ L̃0(Q̄(t), ε). If z ∈ S1 is transcendental, then we consider

C as a Q̄(t) module via f(t) · w := f(z)w. Denote the pairing

V ⊗Q̄(t) C × V ⊗Q̄(t) C → C

(f1(t) ⊗ z1, f2(t) ⊗ z2) �→ z̄1θ(f1(t), f2(t))|t=zz2

by θ as well. Then τ(z) := [(V ⊗Q̄(t) C, θ)] ⊗ p
q ∈ L̃0(C, ε) is well–defined, i.e.

independent of the choice of (V, θ).
The goal of this paper is to prove the following theorem.

Theorem 1.1. Let F be a Galois extension of Q. Then for τ ∈ L̃0(F (t), ε) we get

τ = 0 ∈ L̃0(F (t), ε)
⇔ sign(ρ(τ)(z)) = 0 for all ρ ∈ G0(F ) and all transcendental z ∈ S1.

This result was stated by Litherland [L84, p. 358], but there is no proof in the
literature.

2. Topological motivation

The motivation for studying L̃0(F (t)) comes from knot theory. A knot K ⊂ Sn+2

is a smooth submanifold homeomorphic to Sn. A knot is called slice if it bounds a
smooth (n + 1)–disk in Dn+3. For even dimensions Kervaire [K65] showed that all
knots are slice and Levine [L69] showed that in the case n > 1 a knot is slice if and
only if it is algebraically slice, i.e. if its Seifert form is metabolic.

The case n = 1 turned out to be much harder. A significant breakthrough
was made by Casson and Gordon [CG86] who found examples of knots that are
algebraically slice but not geometrically slice. They used a sliceness obstruction
that lies in L̃0(F (t)) where F/Q is a number field. We give a quick exposition of
their results.

Let K ⊂ S3 be an oriented knot. Denote by MK the result of zero framed
surgery along K. There exists a canonical isomorphism ε : H1(MK) → Z. Let k be
some prime power, and denote by Mk the k-fold cover corresponding to H1(MK) →
Z → Z/k. Denote by TH1(Mk) the Z–torsion part of H1(Mk).

Let χ : H1(Mk) → TH1(Mk) → S1 be a character of order m. Set F :=
Q(e2πi/m). Since Ω3(Z × Z/m) = H3(Z × Z/m) is torsion (cf. [CF64]) there
exists (V 4

k , ε × χ) and some r ∈ N such that ∂(Vk, ε × χ) = r(Mk, ε × χ). Let
α : Z × S1 → Aut(F (t)) be the map given by α(n, z)(f(t)) := tnzf(t). Casson
and Gordon showed that the F (t)–valued pairing on H

α◦(ε×χ)
2 (Vk, F (t)) is non-

singular and therefore defines an element t(Vk) ∈ L0(F (t)). Denote by t0(Vk)
the image of the ordinary intersection pairing on H2(Vk) under the canonical map
L0(Z) → L0(F (t)).

Theorem 2.1 ([CG86]). Let K be a knot, k, m prime powers and χ : H1(Lk) → S1

a character of order m.
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(1)

τ(K, χ) := (t(Vk) − t0(Vk)) ⊗ 1
r
∈ L̃0(Fχ(t))

is a well-defined invariant of (Mk, ε × χ), i.e. independent of the choice of
Vk.

(2) H1(Mk) = Z ⊕ TH1(Mk).
(3) If furthermore K is slice, then there exists a subgroup Q ⊂ TH1(Mk) with

|Q|2 = |TH1(Mk)| such that for any χ : TH1(Mk) → S1 of order m van-
ishing on Q we get τ(K, χ) = 0.

In [F03] the author shows that Theorem 2.1 can be completely reformulated in
terms of eta invariants. This proof relies in particular on the fact that elements in
L̃0(F (t)) can be detected by signature invariants, i.e. the proof relies on Theorem
1.1.

3. Proof of the main theorem

3.1. The groups L̃0(F ), L̃0(F (t)). We quote a result from Ranicki [R98, p. 493].

Proposition 3.1. The following map is an isomorphism:

L̃0(F ) →
⊕

ρ∈G0(F ) L̃0(Q̄)
τ ⊗ r �→ (ρ(τ) ⊗ r)ρ∈G0(F ).

Consider the case where F := Q[t]/q(t), q(t) irreducible and q(t) = uq(t−1) for
some unit u ∈ Q[t−1, t]. Then there exists an involution given by t̄ = t−1, which is
non-trivial if q(t) 
= t − 1, t + 1. In this case the set G(F ) corresponds canonically
to the set of all roots of q(t) lying in S1 and G0(F ) corresponds to all roots z ∈ S1

of q(t) with Im(z) ≥ 0.
The goal of this section is to prove the following theorem.

Theorem 3.2. Let F be a Galois extension of Q. Then for τ ∈ L̃0(F (t), ε) we get

τ = 0 ∈ L̃0(F (t), ε) ⇔ ρ(τ) = 0 ∈ L̃0(Q̄(t), ε) for all ρ ∈ G0(F ).

To simplify the notation we only prove the case ε = 1. We need some definitions
and results from [R98, ch. 39C].

Definition. Let F be a field with a possibly trivial involution. Then define
LAut0fib(F, ε) to be the Witt group of triples (V, θ, f) where V is a vector space
over F , θ an ε-hermitian form on V and f an isometry of (V, θ) such that (f − 1)
is an automorphism as well. Let L̃Aut0fib(F, ε) := LAut0fib(F, ε) ⊗ Q.

Proposition 3.3 ([R98, p. 533]). Let F be a field with (possibly trivial) involution.
(1) There exists a split exact sequence

0 → L̃0(F [t, t−1], ε) → L̃0(F (t), ε) → L̃Aut0fib(F,−ε) → 0.

(2) Denote by M(F ) the set of irreducible monic polynomials p(t) in F [t] with
the added property that p(t) = up(t) for some unit u ∈ F [t, t−1] and
M

0
(F ) := M(F ) \ {t − 1}. For p(t) ∈ M

0
(F ) define

rp(t) : L̃Aut0fib(F, ε) → L̃0(F [t, t−1]/p(t), ε)
(V, θ, f) ⊗ r → (ker{p(f) : V → V }, θ̃) ⊗ r
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where θ̃(a, b) =
∑deg(p)−1

i=0 θ(a, bti)t−i and t acts by f . Then
∏

p(t)∈M
0
(F )

rp(t) : L̃Aut0fib(F, ε)
∼=−→

⊕

p(t)∈M
0
(F )

L̃0(F [t, t−1]/p(t), ε)

is an isomorphism, and the inverse map is given by

L̃0(F [t, t−1]/p(t), ε) → L̃Aut0fib(F, ε)
(V, θ) ⊗ r �→ (V, tr(F [t,t−1]/p(t))/F ◦ θ, t) ⊗ r.

(3) The map

L̃0(F, ε) → L̃0(F [t, t−1], ε)
(V, θ) ⊗ r �→ ((V, θ) ⊗F F [t, t−1]) ⊗ r

is an isomorphism.

There exists a commuting diagram of exact sequences (G0 = G0(F ))
0 → L̃0(F [t, t−1]) → L̃0(F (t)) → L̃Aut0fib(F,−1) → 0

↓
∏

ρ∈G0
ρ ↓

∏
ρ∈G0

ρ ↓
∏

ρ∈G0
ρ

0 →
⊕

ρ∈G0
L̃0(Q̄[t, t−1]) →

⊕
ρ∈G0

L̃0(Q̄(t)) →
⊕

ρ∈G0
L̃Aut0fib(Q̄,−1) → 0

From Propositions 3.1 and 3.3 it follows that the first vertical map is an injection.
Once we show that the last vertical map is an injection as well it follows that the
middle vertical map is an injection. This will prove Theorem 3.2.

For p ∈ F [t, t−1] irreducible we write Fp := F [t, t−1]/p(t). Note that there exists
a canonical correspondence

{(ρ, z)|ρ ∈ G(F ) and z ∈ S1 such that ρ(p)(z) = 0} ↔ G(Fp)
(ρ, z) �→ (ρz :

∑
ait

i → ρ(ai)zi)

since F/Q is Galois. Consider

L̃Aut0fib(F, ε)
∼=−→

⊕

p∈M
0(F )

L̃0(Fp, ε) ↪→
⊕

ρ∈G0

⊕

p∈M0(F )

⊕

z ∈ S1 \ {1}
ρ(p)(z) = 0

L̃0(Q̄, ε)
µρ,z−−−→ Q

↓
∏

ρ∈G0
ρ⊕

ρ∈G0

L̃Aut0fib(Q̄, ε)
∼=−→

⊕
ρ∈G0

⊕
z∈S1\{1} L̃0(Q̄, ε)

σρ,z−−−→ Q

where µρ,z and σρ,z denote the composition of projection maps on the corresponding
L̃0(Q̄, ε) summand and taking signatures. Note that µρ,z is well-defined, since
different p(t)’s have disjoint zero sets. Define µρ,z to be the zero map if z is not a
root for any ρ(p(t)).

Proposition 3.4. Let p ∈ M0(F ). For (V, θ) ∈ L̃0(Fp, ε) we get σρ,z(V, θ) =
µρ,z(V, θ) for all ρ ∈ G0(F ) and z ∈ S1 \ {1} such that ρ(p)(z) = 0.

Corollary 3.5. The map
∏

ρ∈G0(F )

ρ : L̃Aut0fib(F, ε) →
⊕

ρ∈G0(F )

L̃Aut0fib(Q̄, ε)

is an injection.

Note that this corollary concludes the proof of Theorem 3.2. We first prove the
corollary.
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Proof. The induced map
∏

ρ,z∈S1\{1}
µρ,z : L̃0(Fp, ε) →

⊕

ρ,z∈S1\{1}
Q

is an injection. From the proposition it also follows that the induced map
∏

ρ∈G0(F ),z∈S1\{1}
σρ,z : L̃0(Fp, ε) →

⊕

ρ∈G0(F ),z∈S1

Q

is an injection. Since different p’s have disjoint sets of zeros, it follows that
∏

ρ∈G0(F ),z∈S1\{1}
σρ,z :

⊕

p∈M
0
(F )

L̃0(Fp, ε) →
⊕

ρ∈G0(F ),z∈S1

Q

is an injection as well. But this implies that the intermediate map
∏

ρ∈G0(F )

ρ : L̃Aut0fib(F, ε) →
⊕

ρ∈G0(F )

L̃Aut0fib(Q̄, ε)

is injective. �

Now we prove Proposition 3.4.

Proof. Let p ∈ M0(F ). Denote the zeros of ρ(p)(t) by α1, . . . , αn. Pick a zero α of
ρ(p). We can assume that α = α1. Denote the induced embedding Fp → Q̄ by ρα.
Consider

L̃0(Q̄, ε)
rt−z←−−− L̃Aut0fib(Q̄, ε)

ρ←− L̃Aut0fib(F, ε) ← L̃0(Fp, ε)
ρα−−→ L̃0(Q̄, ε)

θl

�→

Q̄ ⊗F (V, trFp/F ◦ θ, t) �→ (V, trFp/F ◦ θ, t) �→ (V, θ) �→ θr .

We have to show that sign(θl) = sign(θr). Note that θr denotes the form

θr : V ⊗Fp Q̄ × V ⊗Fp Q̄ → Q̄

(v1 ⊗Fp z1, v2 ⊗Fp z2) �→ z̄1ρα(θ(v1, v2))z2

where Fp acts on Q̄ via ρα.
Now we have to understand θl. In the following we view Q̄ as an F -module via

ρ. The form Q̄ ⊗F (V, trFp/F ◦ θ, t) is given by

V ⊗F Q̄ × V ⊗F Q̄
trFp/F ◦θ

−−−−−−−→ Q̄ ⊗F F ⊗F Q̄ → Q̄

(v1 ⊗F z1, v2 ⊗F z2) �→ z̄1 ⊗F trFp/F (θ(v1, v2)) ⊗F z2 �→ z̄1ρ(trFp/F (θ(v1, v2)))z2.

Denote by Q̄p the ring Fp ⊗F Q̄ = Q̄[t, t−1]/ρ(p(t)). It is easy to see that the
map

Q̄p(t) = Fp ⊗F Q̄
trFp/F ⊗F id
−−−−−−−−→ F ⊗F Q̄ → Q̄

coincides with trQ̄p/Q̄ : Q̄p → Q̄. Therefore the form Q̄⊗F (V, trFp/F ◦ θ, t) is given
by

V ⊗F Q̄ × V ⊗F Q̄ → Q̄p

trQ̄p/Q̄−−−−→ Q̄

(v1 ⊗F z1, v2 ⊗F z2) �→ θ(v1, v2) ⊗F z̄1z2 �→ trQ̄p/Q̄(θ(v1, v2) ⊗F z̄1z2).

We can write V ⊗F Q̄ = V1⊕· · ·⊕Vn where Vi := ker{(t−αi) : V ⊗F Q̄ → V ⊗F Q̄}
since the minimal polynomial of t is p(t) =

∏n
i=1(t − αi). Then θl is given by

restricting the above form to V1.



652 STEFAN FRIEDL

We can decompose the Q̄[t]-module Q̄p = Q̄[t]/ρ(p(t)) as follows:

Q̄p =
n⊕

i=1

ker{(t − αi) : Q̄p → Q̄p} =
n⊕

i=1

Q̄i

where Q̄i := ker{(t − αi) : Q̄p → Q̄p}. Note that dimQ̄(Q̄i) = 1. Consider the
map µαi : Q̄i → Q̄ given by p(t) �→ p(αi). These maps define isomorphisms of
Q̄-algebras. Then the trace function is given by

trQ̄p/Q̄ :
⊕n

i=1 Q̄i = Q̄p → Q̄

(z1, . . . , zn) �→
∑n

i=1 µi(zi)

since trQ̄p/Q̄ = tr(⊕n
i=1 Q̄i)/Q̄ =

∑n
i=1 trQ̄i/Q̄. The form θ⊗F Q̄ : V ⊗F Q̄×V ⊗F Q̄ →

Q̄p restricts to a form V1 × V1 → Q̄1, and θl is given by V1 × V1 → Q̄1
tr−→ Q̄.

We can now compute θl. Let
∑s1

j=1 v1j ⊗F z1j,
∑s2

l=1 v1l ⊗F z1l ∈ V1. Then

θl(
∑s1

j=1 v1j ⊗F z1j ,
∑s2

l=1 v1l ⊗F z1l) = trQ̄p/Q̄(
∑s1

j=1

∑s2
l=1 θ(v1j , v2l) ⊗F z̄1jz2l)

= µα(
∑s1

j=1

∑s2
l=1 ρ(θ(v1j , v2l))z̄1jz2l)

=
∑s1

j=1

∑s2
l=1 ρα(θ(v1j , v2l))z̄1jz2l.

Consider the following sequence of canonical isomorphisms:

V1 = ker{(t − α) : V ⊗F Q̄ → V ⊗F Q̄}
∼= (V ⊗F Q̄) ⊗Q̄[t] Q̄ ∼= V ⊗F [t] Q̄ ∼= V ⊗Fp Q̄.

The resulting isomorphism is given by

V1 = ker{(t − α) : V ⊗F Q̄ → V ⊗F Q̄} ∼= V ⊗Fp Q̄∑s
j=1 vj ⊗F zj �→

∑s
j=1 vj ⊗Fp zj.

It now follows immediately that the forms θl, θr are isomorphic. �
3.2. The group L̃0(Q̄(t)). We need to quote one more fact.

Proposition 3.6 ([R98, p. 533]). Let F be a field. The splitting L̃Aut0fib(F,−ε) →
L̃0(F (t), ε) in the exact sequence

0 → L̃0(F [t, t−1], ε) → L̃0(F (t), ε) → L̃Aut0fib(F,−ε) → 0

is given by

(V, θ, f) �→ (V ⊗F F (t), (v, w) → (1 − t−1)θ((1 − f)−1v, w)

+ ε(1 − t)θ((1 − f)−1w, v)).

Theorem 3.7. Let τ ∈ L̃0(Q̄(t)). Then

τ = 0 ∈ L̃0(Q̄(t)) ⇔ τ(z) = 0 ∈ L̃0(Q̄) for all transcendental z.

Combining Theorems 3.2 and 3.7 we now get a proof for Theorem 1.1.

Proof. Proposition 3.3, parts (1) and (3), shows that there exists an isomorphism

L̃0(Q̄) ⊕ L̃Aut0fib(Q̄,−1) → L̃0(Q̄(t)).

Let Z := S1 \ {1} ∩ Q̄. Then M0(Q̄) = {t − z|z ∈ Z}. Using that L̃0(Q̄) ∼= Q via
the signature and using part (2) of Proposition 3.3 we get isomorphisms

⊕
z∈Z Q

∼=−→
⊕

z∈Z L̃0(Q̄[t, t−1]/(t − z),−1)
∼=−→ L̃Aut0fib(Q̄,−1)

(rz)z∈Z �→
⊕

(Q̄[t, t−1]/(t − z), i) ⊗ rz �→
⊕

(Q̄, i, z) ⊗ rz.
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The isomorphisms above and Proposition 3.6 show that in L̃0(Q̄(t)) the form τ
is equivalent to

(Q̄(t), 1) ⊗ r0 ⊕
s⊕

j=1

(Q̄(t), i(1 − t−1)(1 − z̄j)−1 + i(1 − t)(1 − zj)−1) ⊗ rj

where zj ∈ S1 \ {1}, j = 1, . . . , s are distinct and r0, . . . , rs ∈ Q. Note that τ = 0 if
and only if r0 = r1 = · · · = rs = 0.

We can assume that ri ∈ N for all i, and hence restrict ourselves to forms in
L0(Q̄(t)). Then the matrix

A(t) := (1) ⊗ r0 ⊕
s⊕

j=1

(i(1 − t−1)(1 − z̄j)−1 + i(1 − t)(1 − zj)−1) ⊗ rj

represents τ . The signature function z �→ sign(A(z)) is locally constant. Its only
jumps are when det(A(t)) = 0, i.e. when

(1 − t−1)(1 − z̄j)−1 + (1 − t)(1 − zj)−1 = 0 for some j,

i.e. when t = 1−z̄j

1−zj
∈ S1. It is clear that sign(A(1)) = r0 and that the jump of the

signature function at t = 1−z̄j

1−zj
∈ S1 is 2rj . The theorem follows now easily since

the transcendental numbers in S1 are dense. �
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